Whole F8 and VWF gene sequencing using Next-Generation Sequencing for mutation-negative French and Canadian hemophilia A patients

Fanny Lassalle1,2, Loubna Jouan3, Laura Swystun1, Julie Gauthier4, Christophe Zawadzki2, Jenny Goudemand2, Sophie Susen2, Georges-Etienne Rivard5, David Lillicrap1

1Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Canada
2Department of Hematology and Transfusion, Lille University Hospital, Lille, France
3Integrated Centre for Pediatric Clinical Genomics, Sainte-Justine University Hospital Research Center, Montreal, Canada
4Molecular Diagnostic Laboratory and Division of Medical Genetics, Department of Pediatrics, Sainte-Justine University Hospital, Montreal, Canada.
5Department of Hematology/Oncology, Sainte-Justine University Hospital, Montreal, Canada

Background: The identification of the molecular defect responsible of hemophilia A (HA) is an important component in optimizing disease diagnosis. Despite the analysis of all exons of F8, as well as 5'/3' UTR regions and search for copy number variants, the pathogenic variant is still missing in about 5% of HA patients. In the last several years, Next-Generation Sequencing (NGS) has provided the capabilities of sequencing the complete F8 and VWF genes.

Aims: The aim of this study is to characterize intronic mutations in the F8 gene of “mutation-negative” French and Canadian HA patients, by using a whole gene sequencing method performed by NGS.

Methods: We developed a small panel containing whole F8 (195kb) and VWF genes (188kb). The SureSelect system was used for target enrichment. We first analyzed 10 mutation-negative HA patients and 6 controls (3 HA and 3 VWD) with known pathogenic variants. NGS was performed on a MiSeq sequencer. Data was analyzed with a bioinformatic pipeline according to the Genome Analysis Toolkit best practices. The effect on splice sites was predicted with Alamut® Visual.

Results: NGS data revealed 5 deep intronic candidate F8 variants (one recurrent) in 5 moderate or mild HA patients. Patient 6, who was known as a moderate HA patient, had two exonic variants in VWF described as VWD disease-causing. This patient has been reclassified as VWD type 2N/3. Two variants causing gene conversion in VWF have been found in patient 7 (mild HA). Some cases with the same variants have been described in VWD patients in France but they were considered as non-pathogenic because always associated with a more pathogenic variant causing the disease. The deleterious effect of this gene conversion between VWF and his pseudogene is not well understood. Patient 8 (mild HA) and related patients 9 and 10 (moderate HA) didn’t have an identified variant. We also found 5 variants that don’t change splice sites so weren’t classified as potentially pathogenic. The average sequence coverage depth was 20-50X. Some variants had a coverage <20X threshold and they were all confirmed with Sanger sequencing.

Conclusion: This preliminary NGS run has corroborated that HA might be caused by deep intronic variants, by discovering 4 new candidate variants. It also showed the importance of sequencing F8 and VWF at the same time, to identify misdiagnosed patients. Future sequencing will optimize the depth of coverage for this assay. RNA and minigene studies are in progress to confirm the deleterious effect of the intronic variants on F8 mRNA splicing.