Common single nucleotide variants in the stabilin-2 (STAB2) gene influence von Willebrand Factor levels in type 1 von Willebrand disease patients

L.L. Swystun,1 A.S. Paine,1 C. Notley,1 W. Hopman,2 R.R. Montgomery,3 P.D. James,4 D. Lillicrap1

1Queen's University, Department of Pathology and Molecular Medicine, Kingston, Canada
2Queen's University, Department of Public Health Sciences, Kingston, Canada
3Medical College of Wisconsin, Department of Pediatrics, Milwaukee, United States
4Queen's University, Department of Medicine, Kingston, Canada

Background: Type 1 von Willebrand disease (VWD) is an inherited bleeding disorder that involves partial quantitative deficiency of the glycoprotein coagulation factor von Willebrand factor (VWF). Type 1 VWD is characterized by incomplete penetrance and variable expressivity, and 35% of patients are “mutation negative” after Sanger sequencing the VWF coding region. This suggests that loci external to the VWF gene might modify the type 1 VWD phenotype. Stabilin-2 is a VWF clearance receptor expressed on the sinusoidal endothelial cells of the liver and spleen. Common single nucleotide variants (SNVs) in the STAB2 gene associate with VWF:Ag (rs4981022, c.6987+378G>A) or FVIII (rs12229292, c.7248+582G>T) levels in normal individuals. We hypothesized that SNVs in the STAB2 gene can influence plasma VWF levels in type 1 VWD patients.

Methods/Patients: 165 type 1 VWD patients from the Canadian and Milwaukee populations were genotyped for SNVs in STAB2 using Taqman analysis. Inclusion criteria included a bleeding diathesis and plasma levels of VWF:Ag and VWF:RCo between 0.05 and 0.50 U/mL, VWF:RCo/VWF:Ag ratio >0.6 U/mL and normal VWF multimers. Patient characteristics are as follows: Median patient age= 17 (range 1-65); VWF:Ag IU/dL= 0.36 (IQR: 0.27-0.42); VWF:RCo= 0.34 IU/dL (IQR: 0.22-0.4); FVIII:C= 0.51 (IQR: 0.41-0.6); female sex= 45%; blood group O= 71.6%. Mutation status was as follows: unknown= 5.3%; mutation negative= 53.8%, mutation positive (1 or more)= 40.9%. Using each SNV genotype as a continuous variable we performed linear regression analysis to quantify differences in VWF:Ag, VWF:RCo, and FVIII:C. All models were adjusted for age and ABO blood group. The study was approved by the Research Ethics Board of participating institutions.

Results: Genotype analysis of rs4981022 showed an association with lower mean VWF:Ag (TT: 0.345 IU/dL, TC: 0.321 IU/dL, CC: 0.294 IU/dL) and FVIII:C (TT: 52.86%, TC: 50.02%, CC: 29.3%). Linear regression confirmed the STAB2 SNV rs4981022 association with lower VWF:Ag (β:-2.8%; CI:-5.5, -0.1; p=0.041) and FVIII:C (β:-1.4%; CI:-6.5, 3.6; p=0.58). Genotype analysis of rs12229292 showed an association with higher mean VWF:Ag (GG: 0.314 IU/dL, GT: 0.343 IU/dL, TT: 0.388 IU/dL) and FVIII:C (GG: 50.18%, GT: 52.51%, TT: 55.28%). Linear regression confirmed the STAB2 SNV rs12229292 associated with elevated VWF:Ag (β:3.8%; CI:0.8, 6.8; p=0.014) and FVIII:C (β:1.9%; CI:-3.8, 7.6; p=0.51). Chi-square analysis demonstrated an increased association of rs12229292 with mutation negative cases (p=0.015) which was confirmed by logistic regression (odds ratio: 0.464, CI: 0.262, 0.823; p=0.009).

Conclusions: We observed that STAB2 SNVs associated with VWF:Ag levels in type 1 VWD with a magnitude of effect and direction of association consistent with results observed in normal individuals. Variants in STAB2 can thus modify the type 1 VWD phenotype through regulation of VWF clearance from the plasma. Understanding the influence of external genetic loci in the type 1 VWD phenotype may improve molecular diagnostics for this inherited bleeding disorder.